Math 579 Fall 2013 Exam 5 Solutions

1. How many surjective functions are there from [8] to [3]?

There are $3^8 = 6561$ functions, but not all are surjective. 3 map onto a single element. 2^8 map onto only $\{1, 2\}$; however two of these map onto a single element, so there are $2^8 - 2 = 254$ surjective functions to $\{1, 2\}$. Similarly, there are 254 surjective functions to $\{1, 3\}$ and 254 to $\{2, 3\}$. Our answer is 6561 - 3 - 254 - 254 - 254 = 5796.

2. Let F(n) denote the number of partitions of [n] with no singleton blocks. Recall that $B(n) = \sum_{i=0}^{n} \{ {n \atop i} \}$. Prove that B(n) = F(n) + F(n+1).

Combinatorial proof: Consider all partitions of [n] into any number of blocks; this is counted by B(n). Some of these have no singleton blocks; these are counted by F(n). The remainder have at least one singleton block. Put all these (at least 1) singletons together, and add the element n + 1. The result is a partition of n + 1 that has no singleton blocks. Since this process is reversible (remove n + 1, and separate the rest of that part into singletons), these partitions are counted by F(n + 1).

3. For each $n \in \mathbb{N}$, calculate $\sum_{k=1}^{n} k^{5}$.

The hardest part is finding the Stirling numbers we need to rewrite k^5 in terms of falling powers via Cor 5.10. We can do this with the addition formula (Thm 5.8) recursively; the result is $k^5 = k^{\underline{1}} + 15k^{\underline{2}} + 25k^{\underline{3}} + 10k^{\underline{10}} + k^{\underline{5}}$. Hence $\sum_{0}^{k+1} k^5 \delta k = \frac{1}{2}(n+1)^{\underline{2}} + 5(n+1)^{\underline{3}} + \frac{25}{4}(n+1)^{\underline{4}} + 2(n+1)^{\underline{5}} + \frac{1}{6}(n+1)^{\underline{6}} - 0$.

4. Find the general solution y(x) to the second-order difference equation $\Delta^2 y = 3^x + x$.

We first find the general antidifference $\Delta y = \sum 3^x + x^{\underline{1}} \delta x = \frac{1}{2} 3^x + \frac{1}{2} x^{\underline{2}} + C$. We now find the antidifference again to get $y = \frac{1}{4} 3^x + \frac{1}{6} x^{\underline{3}} + C x^{\underline{1}} + D$, for arbitrary $C, D \in \mathbb{R}$.

5. Calculate $\sum_{k=0}^{20} (k^2 - k) 3^{-k}$.

We will use summation by parts twice; for convenience we drop the endpoints and work with indefinite sums until the end. $u(k) = k^2, \Delta u(k) = 2k^1, \Delta v(k) = 3^{-k}, v(k) = -\frac{3}{2}3^{-k}, Ev(k) = -\frac{3}{2}3^{-(k+1)} = -\frac{1}{2}3^{-k}$. Hence $\sum u(k)\Delta v(k) = -\frac{3}{2}k^23^{-k} + \sum k^{\frac{1}{2}3^{-k}}$. Now to find $\sum k^{\frac{1}{2}3^{-k}}$ we use $u(k) = k^{\frac{1}{2}}, \Delta u(k) = 1, \Delta v(k) = 3^{-k}, v(k) = -\frac{3}{2}3^{-k}, Ev(k) = -\frac{1}{2}3^{-k}$. Hence $\sum k^{\frac{1}{2}3^{-k}} = -\frac{3}{2}k^{\frac{1}{2}3^{-k}} + \frac{1}{2}\sum 3^{-k} = -\frac{3}{2}k^{\frac{1}{2}3^{-k}} - \frac{3}{4}3^{-k}$. Putting it all together, our answer is $-\frac{3}{2}k^23^{-k} - \frac{3}{2}k^{\frac{1}{2}3^{-k}} - \frac{3}{4}3^{-k} = -\frac{3}{4}3^{-k}(2k^2+2k^{\frac{1}{2}}+1) = -\frac{3}{4}3^{-k}(2k^2+1)$. We evaluate at 21 and 0, then subtract to get $-\frac{3}{4}3^{-21}(2(21)^2+1) + \frac{3}{4}3^0(2(0)^2+1) = \frac{3}{4} - \frac{2649}{4}3^{-21}$ or if you're really hardcore $\frac{261508800}{3485784401}$.